Self-Isolation Monitoring of COVID-19 Patients Using Fuzzy Inference System-Tsukamoto


  • Trisna Ari Roshinta Universitas Sebelas Maret
  • Masbahah Masbahah Universitas Sebelas Maret



Self-isolation, Fuzzy Inference System, Tsukamoto, Monitoring Covid-19 System


In self-isolation of Covid-19 patients, it is very important to carry out regular condition checks. Currently, the examination of severity of patien’s condition can be carried out by the patient himself online with the tools as measurement provided by public health center, and the data can be monitored by medic team. Several applications for monitoring the daily condition of Covid-19 patients have been developed but the parameters used in the monitoring application are not standardized and the accuracy of the application is unknown. This study aims to develop a Covid-19 patient monitoring application using more complete and accurate parameters. The input parameters used are body temperature, O2 saturation, pulse rate, and respiratory rate. The output is the level of the Covid-19 patient's condition which is divided into mild, moderate, and severe, as well as information on the actions that must be taken. This research uses the Fuzzy Inference System-Tsukamoto method. The test results between the system output and expert testing related to the condition of Covid-19 patients show that this self-checking application for monitoring has an accuracy of 95%.


Download data is not yet available.


BNPB, “Surat Keputusan Kepala Badan Nasional Penaggulangan Bencana No.13 A Tentang Status Keadaan Darurat Bencana Wabah Akibat Virus Corona di Indonesia”, 2020

Kemenkes, “Panduan Pelaksanaan Pemeriksaan, Pelacakan, Karantina, dan Isolasi Dalam Rangka Percepatan Pencegahan dan Pengendalian Coronavirus Disease 2019 (Covid-19)”. Keputusan Meneteri Kesehatan Republik Indonesia Nomor HK.01.07/MENKES/4641/2021, 2021

Q. Sun, H. Qiu, M. Huang, & Y. Yang. “Lower mortality of COVID-19 by early recognition and intervention: Experience from Jiangsu Province”. Annals of Intensive Care 2020; 10: 33. PMID: 32189136

W. David, etc, “Remote monitoring of COVID-19 positive high-risk patients in domestic isolation: A feasibility study”, PLoS ONE 16(9): e0257095.

R. Ivan. “Perancangan Sistem Monitoring Suhu Dan Irama Jantung Sebagai Kasus Penyerta Pada Pasien Covid-19 Berbasis IoT”, Jurnal UII, Yogyakarta, 2021

W. Arif, etc. “Sistem Monitoring Pasien Isolasi Mandiri Covid-19 Berbasis Internet Of Things”. Jurnal Teknik Elektro, Volume 10. No 3, Tahun 2021, Halaman 689-697. UNESA. 2021

S. Napitupulu, E. B. Nababan and P. Sihombing, "Comparative Analysis of Fuzzy Inference Tsukamoto Mamdani and Sugeno in the Horticulture Export Selling Price," 2020 3rd International Conference on Mechanical, Electronics, Computer, and Industrial Technology (MECnIT), 2020, pp. 183-187, doi: 10.1109/MECnIT48290.2020.9166587.

M. Sayuti, Juliananda, S. Diana, "Manufacturing optimization using Tsukamoto fuzzy inference system method: A case study in block paving and solid concrete block industry", MATEC Web of Conferences, 2018,

R. A. Priyono and K. Surendro, “Nutritional Needs Recommendation Based on Fuzzy Logic”. Procedia Technology, Volume 11, 2013, Pages 1244-1251. doi:10.1016/j.protcy.2013.12.320

A. Setiawan, B. Yanto, and K. Yasdomi, “Logika Fuzzy dengan Matlab. Jayapangus Press”, 2018, [Online]. Available: [Accessed: Apr. 9, 2022].

S, DeWit, P. A. Williams, “Fundamental concepts and skills for nursing. Elsevier Health Sciences”, 2013

PAPDI, “Buku Panduan Isolasi Mandiri”. 2021. [Online]. Available: [Accessed: Apr. 9, 2022].

A. S. Mugirahayu, L. Linawati, A. Setiawan, “Penentuan Status Kewaspadaan COVID-19 Pada Suatu Wilayah Menggunakan Metode Fuzzy Inference System (FIS) Mamdani”, Jurnal Sains dan Edukasi Sains Vol.4, No.1, Februari 2021: 28-39. doi: 10.24246/juses.v4i1p28-39




How to Cite

T. A. Roshinta and M. Masbahah, “Self-Isolation Monitoring of COVID-19 Patients Using Fuzzy Inference System-Tsukamoto”, SINTECH Journal, vol. 5, no. 2, pp. 173-180, Oct. 2022.