• I Kadek Susila Satwika Institut Bisnis dan Teknologi Indonesia
  • I Putu Susila Handika Institut Bisnis dan Teknologi Indonesia
  • Made Hanindia Prami Swari UPN “Veteran” Jawa Timur



Hadoop, Virtualisasi, Cluster


Large amounts of data processing necessitate the use of a dependable infrastructure. Using clustering technology in Big Data processing is a solution for faster processing times. This study evaluated the performance of the Hadoop server using virtualization technology. A varying number of query requests are sent to Hadoop server clusters at the same time. Then, the CPU and memory (RAM) utilization was calculated. According to the test results, the CPU usage on the namenode reached 100% at the start of the process, followed by an increase in CPU usage on the datanode the next time. Meanwhile, the namenode uses the most memory when it receives 25 requests at once. This demonstrates that the namenode can only serve a maximum of 25 requests at the same time.


Download data is not yet available.


A. Wakde, P. Shende, S. Waydande, S. Uttarwar, and G. Deshmukh, “Comparative Analysis of Hadoop Tools and Spark Technology,” in Proceedings - 2018 4th International Conference on Computing, Communication Control and Automation, ICCUBEA 2018, 2018, doi: 10.1109/ICCUBEA.2018.8697577.

V. C. . L. Min Chen, Shiwen Mao, Yin Zhang, Big Data Related Technologies , Challenges and Future Prospects. .

I. Singh and E. B. Data, “Big Data : Challenges , Opportunities , and Realities,” pp. 1–24, 2016.

J. Patel, “An Effective and Scalable Data Modeling for Enterprise Big Data Platform,” in Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019, 2019, doi: 10.1109/BigData47090.2019.9005614.

D. Grevenbroich, “Inhalt,” 15 Killer Tactics to Boost Your Engagement on Twitter.

V. Jovanovic, D. Subotic, and S. Mrdalj, “Data modeling styles in data warehousing,” in 2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2014 - Proceedings, 2014, doi: 10.1109/MIPRO.2014.6859796.

S. Sharma, “An Extended Classification and Comparison of NoSQL Big Data Models,” no. September 2015, 2015.

M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” in Mobile Networks and Applications, 2014, doi: 10.1007/s11036-013-0489-0.

K. Aziz, D. Zaidouni, and M. Bellafkih, “Real-time data analysis using Spark and Hadoop,” in Proceedings of the 2018 International Conference on Optimization and Applications, ICOA 2018, 2018, doi: 10.1109/ICOA.2018.8370593.

H. Dai, S. Zhang, L. Wang, and Y. Ding, “Research and implementation of big data preprocessing system based on Hadoop,” in Proceedings of 2016 IEEE International Conference on Big Data Analysis, ICBDA 2016, 2016, doi: 10.1109/ICBDA.2016.7509802.

M. Gunay, M. N. Ince, and A. Cetinkaya, “Apache Hive Performance Improvement Techniques for Relational Data,” in 2019 International Conference on Artificial Intelligence and Data Processing Symposium, IDAP 2019, 2019, doi: 10.1109/IDAP.2019.8875898.

A. Thusoo et al., “Hive - A petabyte scale data warehouse using hadoop,” in Proceedings - International Conference on Data Engineering, 2010, doi: 10.1109/ICDE.2010.5447738.

G. DeCandia et al., “Dynamo: Amazon’s highly available key-value store,” in SOSP’07 - Proceedings of 21st ACM SIGOPS Symposium on Operating Systems Principles, 2007.

D. Kusnetzky. Virtualization: A Manager’s Guide, O’Reilly, 2011.

R. Goldman. Learning Proxmox VE, Packt Publishing, 2016.

Robert D. Schneider. The Executive’s Guide To Big Data & Apache Hadoop. 2012.

A. B. Patel, M. Birla, and U. Nair, “Addressing big data problem using Hadoop and Map Reduce,” in 3rd Nirma University International Conference on Engineering, NUiCONE 2012, 2012, doi: 10.1109/NUICONE.2012.6493198.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop distributed file system,” in 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies, MSST2010, 2010, doi: 10.1109/MSST.2010.5496972.

P. Khusumanegara, “Analisis Performa Kecepatan Mapreduce Pada Hadoop Menggunakan Tcp Packet Flow Analysis,” 2012.

J. Camacho-Rodríguez et al., “Apache hive: From mapreduce to enterprise-grade big data warehousing,” Proc. ACM SIGMOD Int. Conf. Manag. Data, pp. 1773–1786, 2019, doi: 10.1145/3299869.3314045.

Cloudera, Apache Hive Guide, 5.8.x. California: Cloudera, Inc., 2020.

I. N. B. Hartawan, & I. K. S. Satwika, Rancang Bangun Laboratorium Virtual Berbasis Cloud Computing Di Stmik Stikom Indonesia. S@Cies, Vol. 7, pp. 54–60, 2016.

M. H. P. Swari, I. K. S. Satwika, I. P. S. Handika, “Performance Analysis of Sales Big Data Processing using Hadoop and Hive in Cloud Environment,” 2020 6th Information Technology International Seminar, ITIS 2020, 2020, doi: 10.1109/ITIS50118.2020.9320964.




How to Cite

Satwika, I. K. S., Handika, I. P. S., & Swari, M. H. P. (2022). ANALISIS UTILISASI RESOURCE CLUSTERS PADA HADOOP MENGGUNAKAN VIRTUALIZATION. Jurnal RESISTOR (Rekayasa Sistem Komputer), 5(1), 94-102.